碳钢搅拌器-中拓鼎承(在线咨询)-乌海搅拌器
六直叶圆盘涡轮搅拌器的优缺点六直叶圆盘涡轮搅拌器典型径流桨,适合中低黏度流体的混合、萃取、乳化、固体悬浮、溶解、气泡分散、吸收等。优点:剪切强、适用范围广,圆盘的存在利于小规格搅拌器的加工。缺点:能耗高、通气时搅拌功率下降幅度大。应用实例:被大量应用于气液搅拌器中,如发酵罐、碳化塔、加氢釜等。四折叶开启涡轮搅拌器的优缺点四折叶开启涡轮搅拌器:轴流桨,适合中低黏度流体的混合、传热、循环、溶解、反应等;优点:适用范围广、制造方便、易大型化;缺点:功率消耗高于曲面轴流桨,低料位时搅拌效果不佳;应用实例:在一个16m3的釜内,需要将碳酸钠粉料溶于苯唑醇溶液中,采用双层四折叶开启涡轮搅拌器,在110r/min转速下运行,可加速碳酸钠的悬浮与溶解(反应).并有效阻止了碳酸钠的结块。桨式和涡轮式搅拌器传热系数关联式早的搅拌罐传热关联式是由Chilton于1944年提出的,对于使用单层平桨、并有碟形封头的圆筒形搅拌罐,乌海搅拌器,其被搅拌液体对罐壁和内冷盘管的表面传热系数关联式分别如下:以后许多研究者改变搅拌器的形状和相对尺寸进行传热研究,提出了很多搅拌罐传热关联式,由于一个关联式只对应于一个几何构形,这些关联式不便使用。20世纪60年代中至70年代初日本的水科笃郎和永田进治等提出了包含多种桨型和多个尺寸参数的统一关联式,如永田对于桨式和涡轮式两种叶轮,且罐内有挡板而无内冷管的情况,螺带式搅拌器,并Re大于100。得如下关联式:对于罐内无挡板而有内冷盘管的情况,则物料对罐壁的表面传热系数关联式为:当除去内冷管时,则须将上式的系数由0.51改成0.54。产生这6%的差别是由于内冷盘管的遮蔽效应。永田也得出在Re>200,2上式中包含了叶轮的多个几何参数,立式搅拌器,如叶径6、罐径D、叶轮离罐底度c、叶片倾角、叶片数孔。和液高等,大大拓宽了公式的适用范围。20世纪70年代,碳钢搅拌器,日本的佐野雄二等对于桨式、涡轮式叶轮在湍流域的场合,进一步建立了罐内液体的单位质量搅拌功率ε与液体对罐壁和内玲管壁的表面传热系数的联系,得到了适用性广、且形式更简单的关联式:式中,为被搅液对夹套的表面传热系数.W/(㎡.K);c为被搅液对内冷管壁的表面传热系数.W/(㎡.K);dc为内冷管外径.m;ε为单位质量被搅液消耗的搅拌功率,W/kg;v为被搅液运动黏度.㎡/s。式(5-17)计算物件时须以流体的本体温度和壁温的算术平均值作定性温度。搪玻璃搅拌罐中多采用三叶后掠式搅拌器,同时采用一种指状或叫梳状的挡板。这种挡板具有节约动力,又有利于出现上下循环流的特点。由于指状挡板的形状不同、配置位置不同,还可以有不同的教果。在固体悬浮过程中,上述的这种直立挡板也有其不利之处。就是在桨叶的底部容易形成固体颗粒的堆积。在搅拌器中采用底挡板就可明显改善这种状况。底挡板的安装如图2-20。底挡板的各种参数已在该图中列出,这时“圆柱状回转区”的半径几乎为定值,而底挡板放在其半径与桨叶半径之间,所以当挡板宽度为0.1D时,挡板可放在与桨叶直径相同大小的圆周上,一般为4块,也有的是十字形放置。碳钢搅拌器-中拓鼎承(在线咨询)-乌海搅拌器由山东中拓鼎承化工机械有限公司提供。山东中拓鼎承化工机械有限公司为客户提供“搅拌器及非标搅拌装置,搪瓷搅拌设备,衬四氟容器,齿轮减速机等”等业务,公司拥有“中拓鼎承”等品牌,专注于化工设备等行业。,在山东省淄博市淄博经济开发区傅家镇的名声不错。欢迎来电垂询,联系人:韩经理。)