茶叶成分检测-多年经验|金标准
图像分割的准确性直接作用于目标物测量的准确性,其效率直接影响生产的效率,因而,一个快速准确图像分割算法是目标识别,分级分类任务面临的首要问题。在农业产品分级分类任务中,图像分割的目的是将工业相机采集到的图片中的农产品准确的提取出来,为进一步的尺寸测量,茶叶成分检测,分类任务做好准备。对于农产品图像分割算法来说,由于受到生产设备成像质量,灰尘污渍,光照条件,阴影等外部因素影响,造成分割的不准确。本文通过对比不同图像分割算法,阐述各类算法的优缺点,以及各自合适的应用场景。图像分割算法是用于农产品光电检测分级分类的基础任务,传统算法的优势在于结构简单,但对复杂环境的适应性较弱。深度学习方法受到环境影响较少,但需大量样本支持,如何正确的获取样本,以及提高算法的整体效率是当前需要解决的主要问题。在实际使用中,深度学习由于性能问题尚无法完全取代传统算法,使用者可以根据具体的需求选择合适的算法。原子吸收光谱法简称AAS是一种仪器分析方法,主要与用于无机元素的分析的原子发射光谱法相辅相成,通过吸收光线的减弱情况来准确计算出样品中该元素的含量,具有检出限比较低、灵敏度高、准确度好等优点,是对无机化合物元素进行定量分析的主要手段。如谢莹等采用湿法消解玉米植物叶片样品,用AAS法测定了玉米叶片中的重金属元素(Cu、Pb、Zn、Cr、Cd)含量,其相对标准偏差为1.1%~7.7%,加标回收率也取得了满意的结果。茶叶成分检测-多年经验|金标准由安徽省金标准检测研究院有限公司提供。安徽省金标准检测研究院有限公司是安徽合肥,咨询、调研的见证者,多年来,公司贯彻执行科学管理、创新发展、诚实守信的方针,满足客户需求。在安徽金标准领导携全体员工热情欢迎各界人士垂询洽谈,共创安徽金标准更加美好的未来。)
安徽省金标准检测研究院有限公司
姓名: 丁瑶 女士
手机: 17856548804
业务 QQ: 2179259773
公司地址: 安徽省合肥市高新区香樟大道211号香枫创意园A座
电话: 1785-6548804
传真: 1785-6548804