双能x射线骨密度-多博科技
一般来说,μ-CT系统通常采用数字平面二维探测器;常用的是电荷耦合器件(CCD)系统,该系统使用闪烁屏,通过光纤束耦合,将X射线转换为可见光子。近,基于互补金属氧化物半导体(CMOS)技术的新型探测器问世,并应用于小动物体内成像系统。下表列出了分辨率和体素尺寸小于1μm的亚微米和纳米CT系统。限制X射线源亮度的一个问题是阳极的热负荷,它会导致阳极局部熔化。液态金属喷射阳极(MetalJet)技术的出现解决了这一问题,该技术通过高速喷射的薄液态金属取代了传统的阳极,从而克服了这一限制(图4)。在这种情况下,阳极的熔化不再是问题,因为阳极已经熔化。使用这些系统获得的亮度比固体阳极X射线管高一个数量级,电子束功率密度可以高出十倍,并且可以获得足够的空间相干性,从而可以使用相位衬度成像技术。与ABI一样,EI也能生成样品折射率梯度的图像。沿着与狭缝正交的方向逐步扫描样品,然后将所有单线粘贴在一起,即可获得样品的整体图像。由于EI技术不需要相干源,因此针对传统X射线管开发了一种改进的设置。在这种情况下,可以用两个掩膜(图10)代替两个狭缝,从而实现上述工作原理,掩膜的特点是有多个孔径,而且不再需要垂直样品扫描。基于光栅的成像(GratingX-RayInterferometry,GI)系统以使用光栅干涉仪为基础。该技术基于Talbot在19世纪30年代发现的光学现象,并设想使用相位光栅和分析光栅。根据这一现象,在X射线照射下,光栅再现的图像会以dT=2p2/λ的规则距离重复出现,其中p是光栅的周期。物体会对X射线光束产生吸收、折射和散射效应,从而改变光栅产生的干涉图案。因此,可以利用角度偏移作为探测器上的强度调制,双能x射线骨密度,测量有样品和无样品时干涉图案的变化。1吸收状态:样品到探测器的距离接近于零。2近场衍射机制:有效传播距离相对较小,即rF2=λD?h2。rF是所谓菲涅尔区在样品平面上的半径,它决定了物体中对图像中的点P有贡献的有限区域。在这些条件下,衬度是在特定物体特征周围局部形成的。物体内部细节的边界会被强烈增强(众所周知的边缘增强的效果),每个边缘都对应一个明显的干涉图案,从而提供可靠的物体形态信息。为了表达近场模式的上述条件,必须定义菲涅尔数为NF≡h2/(λD),这样NF?1。双能x射线骨密度-多博科技由武汉多博科技有限公司提供。行路致远,砥砺前行。武汉多博科技有限公司致力成为与您共赢、共生、共同前行的战略伙伴,更矢志成为技术合作具有竞争力的企业,与您一起飞跃,共同成功!)
武汉多博科技有限公司
姓名: 李总 先生
手机: 18086071648
业务 QQ: 3162659510
公司地址: 武汉市洪山区街道口珞珈山附7号珞珈山大厦A座1904
电话: 180-86071648
传真: 180-86071648