林芝地搅拌器-水处理搅拌器-中拓鼎承(优选商家)
螺带式搅拌器:螺带式搅拌器的叶片是用带钢卷成螺旋状焊接在轴上制成。它适用于中、高黏度(可达数千泊)的搅拌,有较好的上下循环性能。螺带式搅拌器有单螺带、双螺带、内-外螺带、螺带-螺杆等多种型式。螺带式搅拌器与搅拌容器壁的间隙、螺距、头数以及带宽等都对混合效率有影响。应用在高黏度流体时,由于锚式搅拌器几乎不产生上下流动,在容器中心处混合效果较差,且流体黏度越高,这种缺点越明显。而螺带式搅拌器产生的是以上下循环流为主的流动,所以整个容器内的混合效果比较好。对于锥型搅拌器,还可作成锥型的螺带-螺杆式搅拌器,搅拌效果很好。为区分叶轮排演的流向特点,根据主要排液方向将典型叶轮分成径流型和轴流型两种。平叶的桨式、涡轮式是径流型,螺旋面叶片的螺杆式、推进式是轴流型。折叶桨则居于两者之间,一般认为它更接近于轴流型。不过这种分法是近似的,林芝地搅拌器,是以主要流向来分的。搅拌雷诺数是搅拌罐内液体流动状态的一种量度。图2—2形象地表示了八平直叶涡轮和螺带式叶轮在不同雷诺数下,搅拌罐内的液体的流动状态。对于涡轮式叶轮,若叶轮转速很低,在Re不大于10的区域,仅叶轮周围韵液体随叶轮旋转,而远离叶轮的液体是停滞的,如图中-A1所示,因而混合效果很差,混合时间也非常长,见虚线(1)。在此区内,化工搅拌器,液体的流动是层流,叶轮旋转的阻力主要是黏滞阻力。因而N与Re成反比,如曲线(2)。叶轮旋转引起的离心效应可忽略不计,排出流量,见曲线(3)。当Re增加到大于10,涡轮式叶轮旋转所产生的离心力就不可忽视。此离心力产生了排出流量,水处理搅拌器,使角动量传递到远处的液体。这样远离叶轮的液体开始流动,而使Nv-Re曲线偏离曲线(2)的延伸线。在此区内,如曲线(3)所示,曲线上升的坡度很陡,混合大为改善,但在靠近叶轮上下部分仍然出现环形的停滞流区。当Re数增加到数百,涡轮式叶轮周围的液流变成湍流。在区域c,排出流量显著增加,曲线(3)达到了大值。在区域A和B中观察副的停滞区已消失。Re进一步增加,湍流域逐渐扩大,直至终湍流域占完全优势。因此区域c是一个层流和湍流共存的过渡区。在无挡板时,在Re约为90的过渡流域,涡轮式叶轮的排出流达到大值;而在有挡板时,排出流量在湍流域达到大。搅拌器悬浮临界转速的确定所谓悬浮临界转速,是指搅拌釜内悬浮操作达到某一的悬浮状态时,搅拌器转速的小值。只有确定了搅拌器临界转速,才能计算出过程所需要的小功率。(1)完全离底悬浮的临界转速,搅拌器的完全离底悬浮临界转速常用直接观察法和电导法测定。直接观察法是用肉眼观察搅拌釜底颗粒运动状态,当颗粒全部处于运动时,且颗粒在釜底停留(静止)时间不超过1~2s,即认为达到了完全离底悬浮。此法用于实验室研究能够得到满意的结果。电导法是在釜底安装多个电导元件,根据电信号的变化,确定完全离底悬浮临界转速。此法可用于不透明釜体的测量上。在固-液悬浮操作中,对完全离底悬浮的研究较多,也发表了不少有关搅拌器临界转速的关联式。Zwietering通过大量的研究发现,关联式要依据搅拌釜结构尺寸、固相浓度、液体黏度、固体颗粒粒径、固-液两相密度差等影响悬浮操作的主要因素。(2)均匀悬浮临界转速,均匀悬浮临界转速的确定,常用的方法是通过测釜内各点的固相浓度,根据釜内固相浓度分布的均匀度来判断。一般情况下,釜内很难达到均匀悬浮,典型的固体颗粒沿釜深浓度分布如上图所呈,在低转速下,浓度分布不均匀,釜上部浓度低于平均浓度,釜下部浓度高予平均浓度。随着搅拌器转速的增加,反应釜搅拌器,浓度分布趋于均匀。当转速增加到一定程度,浓度均匀性不再增加,沿液面深度始终存在有一定的浓度差,而且从釜中可明显地看出沿液深总有一高浓度区。林芝地搅拌器-水处理搅拌器-中拓鼎承(优选商家)由山东中拓鼎承化工机械有限公司提供。山东中拓鼎承化工机械有限公司实力不俗,信誉可靠,在山东淄博的化工设备等行业积累了大批忠诚的客户。中拓鼎承带着精益求精的工作态度和不断的完善创新理念和您携手步入辉煌,共创美好未来!)