中拓鼎承(图)-搪瓷搅拌器-昭通搅拌器
为区分叶轮排演的流向特点,根据主要排液方向将典型叶轮分成径流型和轴流型两种。平叶的桨式、涡轮式是径流型,螺旋面叶片的螺杆式、推进式是轴流型。折叶桨则居于两者之间,一般认为它更接近于轴流型。不过这种分法是近似的,是以主要流向来分的。搅拌雷诺数是搅拌罐内液体流动状态的一种量度。图2—2形象地表示了八平直叶涡轮和螺带式叶轮在不同雷诺数下,搅拌罐内的液体的流动状态。对于涡轮式叶轮,若叶轮转速很低,反应釜搅拌器,在Re不大于10的区域,仅叶轮周围韵液体随叶轮旋转,而远离叶轮的液体是停滞的,如图中-A1所示,因而混合效果很差,混合时间也非常长,见虚线(1)。在此区内,液体的流动是层流,叶轮旋转的阻力主要是黏滞阻力。因而N与Re成反比,如曲线(2)。叶轮旋转引起的离心效应可忽略不计,排出流量,见曲线(3)。当Re增加到大于10,涡轮式叶轮旋转所产生的离心力就不可忽视。此离心力产生了排出流量,不锈钢搅拌器,使角动量传递到远处的液体。这样远离叶轮的液体开始流动,而使Nv-Re曲线偏离曲线(2)的延伸线。在此区内,如曲线(3)所示,曲线上升的坡度很陡,混合大为改善,但在靠近叶轮上下部分仍然出现环形的停滞流区。当Re数增加到数百,涡轮式叶轮周围的液流变成湍流。在区域c,排出流量显著增加,曲线(3)达到了大值。在区域A和B中观察副的停滞区已消失。Re进一步增加,湍流域逐渐扩大,直至终湍流域占完全优势。因此区域c是一个层流和湍流共存的过渡区。在无挡板时,在Re约为90的过渡流域,涡轮式叶轮的排出流达到大值;而在有挡板时,排出流量在湍流域达到大。搅拌器中的底挡板和指形挡板在之前的文章中,我们介绍过搅拌器中的竖挡板,今天我们仅对底档板和指形挡板进行介绍。一,底挡板顾名思义,底挡板安装在搅拌釜的底部,如图8-3所示。它对促进固体悬浮很有效,可避免在搅拌器的底部形成固体颗粒堆积,因而一般用于搅拌固体粒子形成的悬浮液。对于湍流操作,推荐如图8-3(a)所示的底部小挡板,挡板的参数为:d=0.5D;b=0.lD;h1=0.05D;w=0.1D;C=0.25D;e=0.5d。对于液液分散,当分散相的密度小于连续相时(如把油分散于水),若使用的搅拌器直径太小,则在釜壁易产生浮油;若使用的搅拌器直径太大,则在釜的中部易产生浮油。建议采用如图8-3(b)所示的轻液挡板,可获得好的分散效果。挡板的参数为:d=0.4D;b=0.05~0.1D;Bw=0.07~0.1D;Sb=0.5d;eb=0.5d。二,指形挡板及其他型式的挡板指形挡板(如图8-4所示)类似手指形状,多用于安装在三叶后掠式搅拌器的搪玻璃搅拌釜中。指形挡板比板式挡板节省搅拌功率,亦能起到增加液体上下循环流的作用,有时指形挡板内可通入冷却水,可对搅拌器进行换热作用。一般情况下,指形挡板的设计参数为:管外径d=D/20;指形挡板宽度Wf=0.1D;厚度X=0.04D;间距Sf=0.2D;长度Lf=0.17D;指形挡板与容器内壁间距Sb=0.1D;指形挡板与容器底距离C=0.44D;管下端突出的指形挡板长度L=0.06D。如何防止化工搅拌器中的打旋现象在某些工况下,化工搅拌器在搅拌过程中会发生打旋现象,这种现象对搅拌十分不利。在打旋过程中,液体随着叶轮而运动,但是这种运动时同步的,就是所有液体一起运动,分子间的相对位置并没有发生变化,所有,液体并没有真正混合。打旋会使得漩涡的中心下凹,这样很可能引起空气和叶轮的接触,昭通搅拌器,在搅拌过程中,液体之间的摩擦,叶轮和液体的摩擦都会产生热能,搪瓷搅拌器,而空气和旋转的液体及叶轮接触,并有一定温度,那么很可能产生化学反应,以及气液混合,这对于化工搅拌器的搅拌效果影响,还有可能对叶轮产生腐蚀。并且由于由于中央液面下凹,液体也无法和叶轮完全接触,也影响到了叶轮的搅拌效果。中拓鼎承(图)-搪瓷搅拌器-昭通搅拌器由山东中拓鼎承化工机械有限公司提供。中拓鼎承(图)-搪瓷搅拌器-昭通搅拌器是山东中拓鼎承化工机械有限公司今年新升级推出的,以上图片仅供参考,请您拨打本页面或图片上的联系电话,索取联系人:韩经理。)